The Archean sulfur cycle and the early history of atmospheric oxygen.
نویسندگان
چکیده
The isotope record of sedimentary sulfides can help resolve the history of oxygen accumulation into the atmosphere. We measured sulfur isotopic fractionation during microbial sulfate reduction up to 88 degrees C and show how sulfate reduction rate influences the preservation of biological fractionations in sediments. The sedimentary sulfur isotope record suggests low concentrations of seawater sulfate and atmospheric oxygen in the early Archean (3.4 to 2.8 billion years ago). The accumulation of oxygen and sulfate began later, in the early Proterozoic (2.5 to 0.54 billion years ago).
منابع مشابه
Exploring the Contributions of Liquid - Phase Sulfur Chemistry to the Mass - Independent Sulfur Fractionation of the Archean Rock Record by MASSACH OFT Sebastian Hermann Kopf
Archean sulfur mass-independent fractionation (S-MIF) has been widely recognized as one of the strongest indicators for the rise of atmospheric oxygen in the Early Proterozoic. A decade after its discovery, the wide-ranging implications of Archean sulfur MIF have been discussed extensively and despite a number of recent studies on the gas-phase chemistry of sulfur, no definite overall picture h...
متن کاملA theory of atmospheric oxygen.
Geological records of atmospheric oxygen suggest that pO2 was less than 0.001% of present atmospheric levels (PAL) during the Archean, increasing abruptly to a Proterozoic value between 0.1% and 10% PAL, and rising quickly to modern levels in the Phanerozoic. Using a simple model of the biogeochemical cycles of carbon, oxygen, sulfur, hydrogen, iron, and phosphorous, we demonstrate that there a...
متن کاملMass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere.
Mass-independent fractionation (MIF) of sulfur isotopes has been reported in sediments of Archean and Early Proterozoic Age (> 2.3 Ga) but not in younger rocks. The only fractionation mechanism that is consistent with the data on all four sulfur isotopes involves atmospheric photochemical reactions such as SO2 photolysis. We have used a one-dimensional photochemical model to investigate how the...
متن کاملAtmospheric influence of Earth's earliest sulfur cycle
Mass-independent isotopic signatures for delta(33)S, delta(34)S, and delta(36)S from sulfide and sulfate in Precambrian rocks indicate that a change occurred in the sulfur cycle between 2090 and 2450 million years ago (Ma). Before 2450 Ma, the cycle was influenced by gas-phase atmospheric reactions. These atmospheric reactions also played a role in determining the oxidation state of sulfur, imp...
متن کاملBiosignatures in ancient rocks: a summary of discussions at a field workshop on biosignatures in ancient rocks.
s. Geochim. Cosmochim. Acta 72(12S). Morris, R.C. (1993) Genetic modeling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Res. 60:243–286. Ohmoto, H. (2004) Archean atmosphere, hydrosphere, and biosphere. In The Precambrian Earth: Tempos and Events, Vol. 12, edited by P.G. Erickson, W. Alterman, D.R. Nelson, W.U. Mueller, and O. Catuneanu, Elsevi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 288 5466 شماره
صفحات -
تاریخ انتشار 2000